Refraction and

Dispersion of Light

By: Ms. Simran

Refraction:

When a ray of light propagating in one transparent medium, enters another transparent medium, it is observed to change its direction of propagation, or to bend its path .

Refraction of light

Refraction

Refraction of light is responsible for the apparent shift in position of the coin under water. Refraction of light is defined as the bending of a ray of light, at the interface, while changing medium.

See the apparent shift in position of the red coin placed in water.

Refractive Index and Speed of Light

$\begin{aligned} & \text { Refractive index of Medium 2 } \\ & \text { with respect to Medium } 1\end{aligned}=\frac{\text { Speed of Light in Medium } 1}{\text { Speed ofLight in Medium } 2}$

$$
n_{21}=\frac{\text { Speed of Light in Medium } 1}{\text { Speed of Light in Medium } 2}
$$

Opposite is also true

$\begin{aligned} & \text { Refractive index of Medium } 1 \\ & \text { with respect to Medium } 2\end{aligned}=\frac{\text { speed of Light in Medium } 2}{\text { Speed ofLight in Medium } 1}$

$$
n_{12}=\frac{\text { Speed of Light in Medium } 2}{\text { Speed of Light in Medium } 1}
$$

Solution :

Given :
Speed of light in vacuum $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Speed of light in glass $=2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
We have,
Refractive index of medium $(n)=\frac{\text { Speed of light in vacuum }}{\text { Speed of light in medium (glass) }}$
$\Rightarrow n=\frac{3 \times 10^{8}}{2 \times 10^{8} \mathrm{~m} / \mathrm{s}}=1.5$
\therefore Refractive index of medium $=1.5$

The speed of light in a sample of glass is $1.91 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The speed

 of light in a vacuum is $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$. What is the refractive index of this glass?
Given:

$$
\begin{aligned}
& v=1.91 \times 10^{8} \mathrm{~m} / \mathrm{s} \text { (glass) } \\
& c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Required: n (glass)
Analysis: Solution:

$$
\mathrm{n}=\frac{\mathrm{c}}{\mathrm{v}} \quad=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.91 \times 10^{8} \mathrm{~m} / \mathrm{s}}=1.57
$$

Paraphrase: The refractive index of glass is 1.57

Rules of Refraction:

When ray travel from Rarer to Denser it bends towards normal after refraction

When ray travel from denser to rarer medium it bends away from normal

Refraction of light through a rectangular glass slab

Refraction through parallel faced glass slab ABCD:

1. The final refracted ray, RS is parallel to the incident ray, PQ. However, It is displaced, relative to the ray $P Q$, by an amount, d, say.
2. The incident ray, $P Q$ bends its path and moves along the direction MN within the glass slab.
-This phenomena is responsible for early rising and late setting of the sun.

Dispersion of White Light in a glass prism

teachoo.com

PRISM: A prism is a piece of a transparent material bounded by two plane surfaces inclined at an angle.
-It was in the year 1686 when Sir Issac Newton did his well known experiments on the passage of white light through a glass prism.

- In his experiment, he observed that prism was not only deviating or bending an incident ray towards its base but was also splitting white light into seven colours.
- The phenomena of splitting of white light into seven colours is called Dispersion.

Rainbow -The Natural Effect of

