

DAV POLICE PUBLIC SCHOOL, PANCHKULA

Class:10th

Subject-Science

Assignment

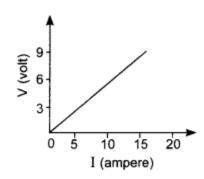
Chapter 12 (Electricity)

1. A wire of length /, made of material resistivity ρ is cut into two equal parts. The resistivity of the two parts are equal to,

(a) p

- (b) $\rho/2$
- (c) 2 p
- $(d) 4 \rho$

2. A battery of 10 volt carries 20,000 C of charge through a resistance of 20 Ω . The work done in 10 seconds is

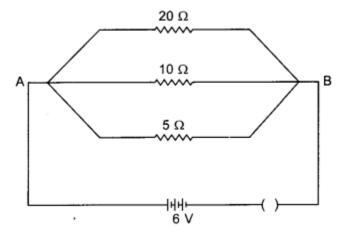

- (a) 2×10^3 joule

- (b) 2×10^5 joule (c) 2×10^4 joule (d) 2×10^2 joule

3. A boy records that 4000 joule of work is required to transfer 10 coulomb of charge between two points of a resistor of 50 Ω . The current passing through it is

- (a) 2 A
- (b) 4 A
- (c) 8 A
- (d) 16 A

4. The resistance whose V-I graph is given below is


- (c) $\frac{5}{2}\Omega$

5. To get 2 Ω resistance using only 6 Ω resistors, the number of them required is

- (a) 2
- (b) 3
- (c) 4
- (d) 6

6. Two wires of same length and area made of two materials of resistivity ρ_1 and ρ_2 are connected in series to a source of potential V. The equivalent resistivity for the same area is

- (a) $\rho_1 + \rho_2$
- $(b) \ \frac{\rho_1 \rho_2}{\rho_1 + \rho_2}$
- (c) $\frac{(\rho_1 + \rho_2)}{\rho_1 \rho_2}$
- (d) $\left(\frac{\left|\rho_1+\rho_2\right|}{2}\right)$
- 7. Two devices are connected between two points say A and B in parallel. The physical quantity that will remain the same between the two points is
- (a) current
- (b) voltage
- (c) resistance
- (d) None of these
- 8. The least resistance obtained by using 2 Ω , 4 Ω , 1 Ω and 100 Ω is
- a) < 100 Ω
- (b) < 4 Ω
- (c) $< 1 \Omega$ (d) $> 2 \Omega$
- 9. Two wires of same length and area, made of two materials of resistivity ρ_1 and ρ_2 are connected in parallel V to a source of potential. The equivalent resistivity for the same length and area is
- (a) $\rho_1 + \rho_2$
- (b) $\rho_1 \rho_2$
- (c) $\frac{(\rho_1 + \rho_2)}{\rho_1 \rho_2}$
- (d) $|\rho_1 \rho_2|$
- 10. Calculate the current flows through the 10 Ω resistor in the following circuit.

- (a) 1.2 A
- (b) 0.6 A
- (c) 0.2 A
- (d) 2.0 A
- 11. Two resistors are connected in series gives an equivalent resistance of 10 Ω . When connected in parallel, gives 2.4 Ω . Then the individual resistance are
- (a) each of 5 Ω
- (b) 6 Ω and 4 Ω
- (c) 7 Ω and 4 Ω
- (d) 8 Ω and 2 Ω
- 12. If R₁ and R₂ be the resistance of the filament of 40 W and 60 W respectively operating 220 V, then
- (a) $R_1 < R_2$
- (b) $R_2 < R_1$
- (c) $R_1 = R_2$
- (d) $R_1 \ge R_2$
- 13. The resistance of hot filament of the bulb is about 10 times the cold resistance. What will be the resistance of 100 W-220 V lamp, when not in use?
- (a) 48 Ω
- (b) 400 Ω
- (c) 484 Ω
- (d) 48.4 Ω

14. If P and V are the power and potential of device, the power consumed with a supply potential V₁ is

- (a) $\frac{V_1^2}{V^2}$ P
- (b) $\frac{V^2}{V^2}$ P
- (c) $\frac{\mathbf{V}}{\mathbf{V}_1}$ P
- (d) $\frac{V_1}{V}$ P

15. A coil in the heater consume power P on passing current. If it is cut into halves and joined in parallel, it will consume power

- (a) P
- (b) P2
- (c) 2P
- (d) 4P

16. A resistance of 1 k Ω has a current of 0.25 A throughout it when it is connected to the terminals of a battery. What is the potential difference across the ends of a resistor?

17. Calculate the current in a circuit if 500 C of charge passes through it in 10 minutes.

18. An electric iron draws a current of 0.6 A when the voltage is 100 volt Calculate the amount of electric charge flowing through it in one hour.

19. A given length of a wire is doubled on itself and this process is repeated once again. By what factor does the resistance of the wire change?

20. A lamp draws a current of 0.5 A when it is connected to a 60 V source. What is the resistance of the lamp?